Given an integer array nums, which can have duplicate entries, provide the power set. Duplicate subsets cannot exist in the solution set. Return the answer in any sequence.
Input : nums = [1, 2, 2]
Output : [ [ ] , [1] , [1, 2] , [1, 2, 2] , [2] , [2, 2] ]
Input : nums = [1, 2]
Output : [ [ ], [1] , [2] , [1, 2] ]
Input : nums = [1, 3, 3]
Imagine a task to create all possible groups of items from a list that might have repeated items, ensuring no group is duplicated. The goal is to include each item or skip it, but if an item is skipped, all identical items must also be skipped to avoid duplicate groups. This mirrors the recursive process by methodically including or excluding each item while traversing the list. If an item is included, the process continues with the next item. If an item is excluded, the process skips all its duplicates to maintain unique groups. This step-by-step approach ensures all potential combinations are explored while preventing duplicates.
#include<bits/stdc++.h>
using namespace std;
class Solution {
private:
// Helper function to generate subsets
void func(int ind, vector<int> &arr, vector<int> &nums, vector<vector<int>> &ans) {
// Base case: if index reaches the end of nums
if(ind == nums.size()) {
// Add the current subset (arr) to the result
ans.push_back(arr);
return;
}
// Include the current element in the subset
arr.push_back(nums[ind]);
// Recur for the next index
func(ind+1, arr, nums, ans);
// Backtrack: remove the current element from the subset
arr.pop_back();
// Skip duplicates and recur for the next unique element
for(int j = ind + 1; j < nums.size(); j++) {
if(nums[j] != nums[ind]) {
func(j, arr, nums, ans);
return;
}
}
// Ensure the function finishes when no more unique elements are left
func(nums.size(), arr, nums, ans);
}
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
vector<vector<int>> ans; // Resulting list of subsets
vector<int> arr; // Current subset
sort(nums.begin(), nums.end()); // Sort the array to handle duplicates
func(0, arr, nums, ans); // Start recursion
return ans;
}
};
int main() {
Solution sol;
vector<int> nums = {1, 2, 2}; // Example input
vector<vector<int>> result = sol.subsetsWithDup(nums);
// Print the resulting subsets
for(const auto& subset : result) {
cout << "[ ";
for(int num : subset) {
cout << num << " ";
}
cout << "]\n";
}
return 0;
}
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
class Solution {
private void func(int ind, List<Integer> arr, int[] nums, List<List<Integer>> ans) {
// If index reaches the end of nums
if (ind == nums.length) {
// Add the current subset (arr) to the result
ans.add(new ArrayList<>(arr));
return;
}
// Include the current element in the subset
arr.add(nums[ind]);
// Recur for the next index
func(ind + 1, arr, nums, ans);
// Backtrack: remove the current element from the subset
arr.remove(arr.size() - 1);
// Skip duplicates and recur for the next unique element
for (int j = ind + 1; j < nums.length; j++) {
if (nums[j] != nums[ind]) {
func(j, arr, nums, ans);
return;
}
}
// Ensure the function finishes when no more unique elements are left
func(nums.length, arr, nums, ans);
}
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> ans = new ArrayList<>(); // Resulting list of subsets
List<Integer> arr = new ArrayList<>(); // Current subset
Arrays.sort(nums); // Sort the array to handle duplicates
func(0, arr, nums, ans); // Start recursion
return ans;
}
public static void main(String[] args) {
Solution sol = new Solution();
int[] nums = {1, 2, 2}; // Example input
List<List<Integer>> result = sol.subsetsWithDup(nums);
// Print the resulting subsets
for (List<Integer> subset : result) {
System.out.println(subset);
}
}
}
class Solution:
def func(self, ind, arr, nums, ans):
# If index reaches the end of nums
if ind == len(nums):
# Add the current subset (arr) to the result
ans.append(arr.copy())
return
# Include the current element in the subset
arr.append(nums[ind])
# Recur for the next index
self.func(ind + 1, arr, nums, ans)
# Backtrack: remove the current element from the subset
arr.pop()
# Skip duplicates and recur for the next unique element
for j in range(ind + 1, len(nums)):
if nums[j] != nums[ind]:
self.func(j, arr, nums, ans)
return
# Ensure the function finishes when no more unique elements are left
self.func(len(nums), arr, nums, ans)
def subsetsWithDup(self, nums):
ans = [] # Resulting list of subsets
arr = [] # Current subset
nums.sort() # Sort the array to handle duplicates
self.func(0, arr, nums, ans) # Start recursion
return ans
if __name__ == "__main__":
sol = Solution()
nums = [1, 2, 2] # Example input
result = sol.subsetsWithDup(nums)
# Print the resulting subsets
for subset in result:
print(subset)
class Solution {
func(ind, arr, nums, ans) {
// If index reaches the end of nums
if (ind === nums.length) {
// Add the current subset (arr) to the result
ans.push([...arr]);
return;
}
// Include the current element in the subset
arr.push(nums[ind]);
// Recur for the next index
this.func(ind + 1, arr, nums, ans);
// Backtrack: remove the current element from the subset
arr.pop();
// Skip duplicates and recur for the next unique element
for (let j = ind + 1; j < nums.length; j++) {
if (nums[j] !== nums[ind]) {
this.func(j, arr, nums, ans);
return;
}
}
// Ensure the function finishes when no more unique elements are left
this.func(nums.length, arr, nums, ans);
}
subsetsWithDup(nums) {
const ans = []; // Resulting list of subsets
const arr = []; // Current subset
nums.sort((a, b) => a - b); // Sort the array to handle duplicates
this.func(0, arr, nums, ans); // Start recursion
return ans;
}
}
const sol = new Solution();
const nums = [1, 2, 2]; // Example input
const result = sol.subsetsWithDup(nums);
// Print the resulting subsets
for (const subset of result) {
console.log(subset);
}
Time Complexity: O(2^N * N) - Each element is either included or excluded, leading to an exponential number of subsets.
Space Complexity: O(N) - The space complexity is dominated by the recursion stack, which can go as deep as the number of elements in the input list.
Q: How does the solution ensure subsets are unique?
A: By skipping duplicate elements during recursion or tracking subsets generated in the last step during iteration, the algorithm avoids duplicate subsets.
Q: What if subsets of a specific size k are required?
A: Use combinations from the itertools library or modify the backtracking approach to include a size constraint.
Q: Can this problem be solved without sorting the array?
A: Sorting simplifies the process of skipping duplicates, but you can use a hash set to track generated subsets and ensure uniqueness without sorting.