Design a stack that supports the following operations in constant time: push, pop, top, and retrieving the minimum element.
Implement the MinStack class:
MinStack(): Initializes the stack object.
void push(int val): Pushes the element val onto the stack.
void pop(): removes the element on the top of the stack.
int top(): gets the top element of the stack.
int getMin(): retrieves the minimum element in the stack.
Input:
["MinStack", "push", "push", "push", "getMin", "pop", "top", "getMin"]
[ [], [-2], [0], [-3], [ ], [ ], [ ], [ ] ]
Output:
[null, null, null, null, -3, null, 0, -2]
Explanation:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); // returns -3
minStack.pop();
minStack.top(); // returns 0
minStack.getMin(); // returns -2
Input:
["MinStack", "push", "push", "getMin", "push", "pop", "getMin", "top"]
[ [ ], [5], [1], [ ], [3], [ ], [ ], [ ] ]
Output:
[null, null, null, 1, null, null, 1, 1]
Explanation:
MinStack minStack = new MinStack();
minStack.push(5);
minStack.push(1);
minStack.getMin(); // returns 1
minStack.push(3);
minStack.pop();
minStack.getMin(); // returns 1
minStack.top(); // returns 1
Input:
["MinStack", "push", "push", "push", "top", "getMin", "pop", "getMin"]
[[], [10], [15], [5], [], [], [], []]
In a usual stack data structure, there is no method to get the minimum element present in the stack in constant time. This can be overcome, if all the numbers are stored in pairs with their current minimum element. This way, the stack will not only able to perform the previous methods in constant time, but also perform the getMin() method in constant time.
Note: The stack will store the following pair: {element, current minimum}
#include <bits/stdc++.h>
using namespace std;
// Class to implement Minimum Stack
class MinStack {
private:
// Initialize a stack
stack <pair<int,int>> st;
public:
// Empty Constructor
MinStack() {
}
// Method to push a value in stack
void push(int value) {
// If stack is empty
if(st.empty()) {
// Push current value as minimum
st.push( {value, value} );
return;
}
// Update the current minimum
int mini = min(getMin(), value);
// Add the pair to the stack
st.push({value, mini});
}
// Method to pop a value from stack
void pop() {
// Using in-built pop method
st.pop();
}
// Method to get the top of stack
int top() {
// Return the top value
return st.top().first;
}
// Method to get the minimum in stack
int getMin() {
// Return the minimum
return st.top().second;
}
};
int main() {
MinStack s;
// Function calls
s.push(-2);
s.push(0);
s.push(-3);
cout << s.getMin() << " ";
s.pop();
cout << s.top() << " ";
s.pop();
cout << s.getMin();
return 0;
}
import java.util.*;
// Class to implement Minimum Stack
class MinStack {
// Initialize a stack
private Stack<int[]> st;
// Empty Constructor
public MinStack() {
st = new Stack<>();
}
// Method to push a value in stack
public void push(int value) {
// If stack is empty
if (st.isEmpty()) {
// Push current value as minimum
st.push(new int[]{value, value});
return;
}
// Update the current minimum
int mini = Math.min(getMin(), value);
// Add the pair to the stack
st.push(new int[]{value, mini});
}
// Method to pop a value from stack
public void pop() {
// Using in-built pop method
st.pop();
}
// Method to get the top of stack
public int top() {
// Return the top value
return st.peek()[0];
}
// Method to get the minimum in stack
public int getMin() {
// Return the minimum
return st.peek()[1];
}
}
public class Main {
public static void main(String[] args) {
MinStack s = new MinStack();
// Function calls
s.push(-2);
s.push(0);
s.push(-3);
System.out.print(s.getMin() + " ");
s.pop();
System.out.print(s.top() + " ");
s.pop();
System.out.print(s.getMin());
}
}
class MinStack:
# Empty Constructor
def __init__(self):
# Initialize a stack
self.st = []
# Method to push a value in stack
def push(self, value):
# If stack is empty
if not self.st:
# Push current value as minimum
self.st.append((value, value))
return
# Update the current minimum
mini = min(self.getMin(), value)
# Add the pair to the stack
self.st.append((value, mini))
# Method to pop a value from stack
def pop(self):
# Using in-built pop method
self.st.pop()
# Method to get the top of stack
def top(self):
# Return the top value
return self.st[-1][0]
# Method to get the minimum in stack
def getMin(self):
# Return the minimum
return self.st[-1][1]
if __name__ == "__main__":
s = MinStack()
# Function calls
s.push(-2)
s.push(0)
s.push(-3)
print(s.getMin(), end=" ")
s.pop()
print(s.top(), end=" ")
s.pop()
print(s.getMin())
// Class to implement Minimum Stack
class MinStack {
// Initialize a stack
constructor() {
this.st = [];
}
// Method to push a value in stack
push(value) {
// If stack is empty
if (this.st.length === 0) {
// Push current value as minimum
this.st.push([value, value]);
return;
}
// Update the current minimum
const mini = Math.min(this.getMin(), value);
// Add the pair to the stack
this.st.push([value, mini]);
}
// Method to pop a value from stack
pop() {
// Using in-built pop method
this.st.pop();
}
// Method to get the top of stack
top() {
// Return the top value
return this.st[this.st.length - 1][0];
}
// Method to get the minimum in stack
getMin() {
// Return the minimum
return this.st[this.st.length - 1][1];
}
}
// Main function to demonstrate the MinStack functionality
const s = new MinStack();
// Function calls
s.push(-2);
s.push(0);
s.push(-3);
console.log(s.getMin() + " ");
s.pop();
console.log(s.top() + " ");
s.pop();
console.log(s.getMin());
Time Complexity: O(1) All the operations take constant time.
Space Complexity: O(2*N) (where N is the total number of calls made for push operation)
All the numbers are stored in pairs leading to a stack space of O(2*N).
To efficiently keep track of the minimum element in the stack at all times while maintaining constant time complexity for each operation, a clever approach is needed. This can be achieved by modifying the values stored in the stack when a new minimum is encountered. Instead of storing pairs or auxiliary stacks, we store a specially calculated value that allows us to track the minimum.
#include <bits/stdc++.h>
using namespace std;
// Class to implement Minimum Stack
class MinStack {
private:
// Initialize a stack
stack <int> st;
// To store the minimum value
int mini;
public:
// Empty Constructor
MinStack() {
}
// Method to push a value in stack
void push(int value) {
// If stack is empty
if(st.empty()) {
//Update the minimum value
mini = value;
// Push current value as minimum
st.push( value );
return;
}
// If the value is greater than the minimum
if(value > mini) {
st.push(value);
}
else {
// Add the modified value to stack
st.push(2 * value - mini);
// Update the minimum
mini = value;
}
}
// Method to pop a value from stack
void pop() {
// Base case
if(st.empty()) return;
// Get the top
int x = st.top();
st.pop(); // Pop operation
// If the modified value was added to stack
if(x < mini) {
// Update the minimum
mini = 2 * mini - x;
}
}
// Method to get the top of stack
int top() {
// Base case
if(st.empty()) return -1;
// Get the top
int x = st.top();
// Returnn top if minimum is less than the top
if(mini < x) return x;
//Otherwise return mini
return mini;
}
// Method to get the minimum in stack
int getMin() {
// Return the minimum
return mini;
}
};
int main() {
MinStack s;
// Function calls
s.push(-2);
s.push(0);
s.push(-3);
cout << s.getMin() << " ";
s.pop();
cout << s.top() << " ";
s.pop();
cout << s.getMin();
return 0;
}
import java.util.Stack;
// Class to implement Minimum Stack
class MinStack {
private Stack<Integer> st;
private int mini;
// Empty Constructor
public MinStack() {
st = new Stack<>();
}
// Method to push a value in stack
public void push(int value) {
// If stack is empty
if (st.isEmpty()) {
// Update the minimum value
mini = value;
// Push current value as minimum
st.push(value);
return;
}
// If the value is greater than the minimum
if (value > mini) {
st.push(value);
} else {
// Add the modified value to stack
st.push(2 * value - mini);
// Update the minimum
mini = value;
}
}
// Method to pop a value from stack
public void pop() {
// Base case
if (st.isEmpty()) return;
// Get the top
int x = st.pop();
// If the modified value was added to stack
if (x < mini) {
// Update the minimum
mini = 2 * mini - x;
}
}
// Method to get the top of stack
public int top() {
// Base case
if (st.isEmpty()) return -1;
// Get the top
int x = st.peek();
// Return top if minimum is less than the top
if (mini < x) return x;
// Otherwise return mini
return mini;
}
// Method to get the minimum in stack
public int getMin() {
// Return the minimum
return mini;
}
}
public class Main {
public static void main(String[] args) {
MinStack s = new MinStack();
// Function calls
s.push(-2);
s.push(0);
s.push(-3);
System.out.print(s.getMin() + " ");
s.pop();
System.out.print(s.top() + " ");
s.pop();
System.out.print(s.getMin());
}
}
class MinStack:
def __init__(self):
# Initialize a stack
self.st = []
# To store the minimum value
self.mini = None
# Method to push a value in stack
def push(self, value):
# If stack is empty
if not self.st:
# Update the minimum value
self.mini = value
# Push current value as minimum
self.st.append(value)
return
# If the value is greater than the minimum
if value > self.mini:
self.st.append(value)
else:
# Add the modified value to stack
self.st.append(2 * value - self.mini)
# Update the minimum
self.mini = value
# Method to pop a value from stack
def pop(self):
# Base case
if not self.st:
return
# Get the top
x = self.st.pop()
# If the modified value was added to stack
if x < self.mini:
# Update the minimum
self.mini = 2 * self.mini - x
# Method to get the top of stack
def top(self):
# Base case
if not self.st:
return -1
# Get the top
x = self.st[-1]
# Return top if minimum is less than the top
if self.mini < x:
return x
# Otherwise return mini
return self.mini
# Method to get the minimum in stack
def getMin(self):
# Return the minimum
return self.mini
if __name__ == "__main__":
s = MinStack()
# Function calls
s.push(-2)
s.push(0)
s.push(-3)
print(s.getMin(), end=" ")
s.pop()
print(s.top(), end=" ")
s.pop()
print(s.getMin())
class MinStack {
constructor() {
// Initialize a stack
this.st = [];
// To store the minimum value
this.mini = null;
}
// Method to push a value in stack
push(value) {
// If stack is empty
if (this.st.length === 0) {
// Update the minimum value
this.mini = value;
// Push current value as minimum
this.st.push(value);
return;
}
// If the value is greater than the minimum
if (value > this.mini) {
this.st.push(value);
} else {
// Add the modified value to stack
this.st.push(2 * value - this.mini);
// Update the minimum
this.mini = value;
}
}
// Method to pop a value from stack
pop() {
// Base case
if (this.st.length === 0) return;
// Get the top
let x = this.st.pop();
// If the modified value was added to stack
if (x < this.mini) {
// Update the minimum
this.mini = 2 * this.mini - x;
}
}
// Method to get the top of stack
top() {
// Base case
if (this.st.length === 0) return -1;
// Get the top
let x = this.st[this.st.length - 1];
// Return top if minimum is less than the top
if (this.mini < x) return x;
// Otherwise return mini
return this.mini;
}
// Method to get the minimum in stack
getMin() {
// Return the minimum
return this.mini;
}
}
// Example usage
let s = new MinStack();
// Function calls
s.push(-2);
s.push(0);
s.push(-3);
console.log(s.getMin(), " ");
s.pop();
console.log(s.top(), " ");
s.pop();
console.log(s.getMin());
Time Complexity: O(1) All the operations take constant time.
Space Complexity: O(N) (where N is the total number of calls made for push operation)
As only one value per element is stored in the stack.
Q: Why do we need a min_stack instead of tracking min normally?
A: If we only track a single min variable, we lose previous minimums after popping.
Q: What happens when multiple elements have the same minimum value?
A: min_stack correctly keeps track of previous min values, even if duplicates exist.
Q: What if we had to track the k-th minimum instead of just the min?
A: Use a self-balancing BST (e.g., AVL tree) or a MinHeap.
Q: How does this compare to a priority queue for tracking the min?
A: MinHeap supports min tracking but is O(log n) for insert/remove, while this stack achieves O(1).