Given an array arr of integers. A peak element is defined as an element greater than both of its neighbors. Formally, if arr[i] is the peak element, arr[i - 1] < arr[i] and arr[i + 1] < arr[i]. Find the index(0-based) of a peak element in the array. If there are multiple peak numbers, return the index of any peak number.
Note: As there can be many peak values, 1 is given as output if the returned index is a peak number, otherwise 0.
Input : arr = [1, 2, 3, 4, 5, 6, 7, 8, 5, 1]
Output: 7
Explanation: In this example, there is only 1 peak that is at index 7.
Input : arr = [1, 2, 1, 3, 5, 6, 4]
Output: 1
Explanation: In this example, there are 2 peak numbers at indices 1 and 5. We can consider any of them.
Input : arr = [-2, -1, 3, 4, 5]
A simple approach involves iterating through the array and checking the adjacent elements of the current element, if the adjacent elements are smaller than the current element then the current element will be the peak element.
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
// Function to find the peak element in the array
int findPeakElement(vector<int> &arr) {
// Size of array
int n = arr.size();
/* Iterate through the array
to find the peak element */
for (int i = 0; i < n; i++) {
// Check if arr[i] is a peak
if ((i == 0 || arr[i - 1] < arr[i]) && (i == n - 1 || arr[i] > arr[i + 1])) {
//Return the index of peak element
return i;
}
}
/* Return -1 if no peak element
found (dummy return) */
return -1;
}
};
int main() {
vector<int> arr = {1, 2, 3, 4, 5, 6, 7, 8, 5, 1};
// Create an instance of the Solution class
Solution sol;
int ans = sol.findPeakElement(arr);
// Output the result
cout << "The peak is at index: " << ans << "\n";
return 0;
}
import java.util.*;
class Solution {
// Function to find peak element in the array
public int findPeakElement(int[] arr) {
// Size of array
int n = arr.length;
/* Iterate through the array
to find the peak element */
for (int i = 0; i < n; i++) {
// Check if arr[i] is a peak
if ((i == 0 || arr[i - 1] < arr[i]) && (i == n - 1 || arr[i] > arr[i + 1])) {
// Return the index of peak element
return i;
}
}
/* Return -1 if no peak element
found (dummy return) */
return -1;
}
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6, 7, 8, 5, 1};
// Create an instance of the Solution class
Solution sol = new Solution();
int ans = sol.findPeakElement(arr);
// Output the result
System.out.println("The peak is at index: " + ans);
}
}
class Solution:
# Function to find peak element in the array
def findPeakElement(self, arr):
# Size of array
n = len(arr)
""" Iterate through the array
to find the peak element """
for i in range(n):
# Check if arr[i] is a peak
if (i == 0 or arr[i - 1] < arr[i]) and (i == n - 1 or arr[i] > arr[i + 1]):
# Return the index of peak element
return i
""" Return -1 if no peak element
found (dummy return) """
return -1
def main():
arr = [1, 2, 3, 4, 5, 6, 7, 8, 5, 1]
# Create an instance of the Solution class
sol = Solution()
ans = sol.findPeakElement(arr)
# Output the result
print("The peak is at index:", ans)
# Call the main function
if __name__ == "__main__":
main()
class Solution {
// Function to find the peak element in the array
findPeakElement(arr) {
// Size of array
let n = arr.length;
/* Iterate through the array
to find the peak element */
for (let i = 0; i < n; i++) {
// Check if arr[i] is a peak
if ((i === 0 || arr[i - 1] < arr[i]) && (i === n - 1 || arr[i] > arr[i + 1])) {
// Return the index of peak element
return i;
}
}
/* Return -1 if no peak element
found (dummy return) */
return -1;
}
}
function main() {
let arr = [1, 2, 3, 4, 5, 6, 7, 8, 5, 1];
// Create an instance of the Solution class
let sol = new Solution();
let ans = sol.findPeakElement(arr);
// Output the result
console.log("The peak is at index:", ans);
}
// Call the main function
main();
Here, the idea is to use binary search algorithm to optimize the brute-force solution where linear serch was being used. For each element (mid), we check if it is greater than its previous and next elements. If so, mid is identified as a peak element. Alternatively, if mid is smaller than its previous element, a peak must exist on the left side, so the right half is eliminated. Similarly, if mid is less than the next element, a peak must exist on the right side, so the left half is eliminated. This approach trims down the search space in each iteration, thereby enhancing the time complexity.
The left half of the peak element has an increasing order and the right half of the peak element has a decreasing order. So if the current element is greater than the previous element, it means we are in left half and if current element is greater than the next element, it means we are in the right half of the search space.
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
// Function to find the peak element in the array
int findPeakElement(vector<int> &arr) {
// Size of array
int n = arr.size();
// Edge cases:
if (n == 1) return 0;
if (arr[0] > arr[1]) return 0;
if (arr[n - 1] > arr[n - 2]) return n - 1;
int low = 1, high = n - 2;
while (low <= high) {
int mid = (low + high) / 2;
//If arr[mid] is the peak
if (arr[mid - 1] < arr[mid] && arr[mid] > arr[mid + 1])
return mid;
// If we are in the left
if (arr[mid] > arr[mid - 1]) low = mid + 1;
/* If we are in the right
Or, arr[mid] is a common point*/
else high = mid - 1;
}
/* Return -1 if no peak element
found (dummy return) */
return -1;
}
};
int main() {
vector<int> arr = {1, 2, 3, 4, 5, 6, 7, 8, 5, 1};
// Create an instance of the Solution class
Solution sol;
int ans = sol.findPeakElement(arr);
// Output the result
cout << "The peak is at index: " << ans << "\n";
return 0;
}
import java.util.*;
class Solution {
// Function to find peak element in the array
public int findPeakElement(int[] arr) {
// Size of array
int n = arr.length;
// Edge cases:
if (n == 1) return 0;
if (arr[0] > arr[1]) return 0;
if (arr[n - 1] > arr[n - 2]) return n - 1;
int low = 1, high = n - 2;
while (low <= high) {
int mid = (low + high) / 2;
//If arr[mid] is the peak
if (arr[mid - 1] < arr[mid] && arr[mid] > arr[mid + 1])
return mid;
// If we are in the left
if (arr[mid] > arr[mid - 1]) low = mid + 1;
/* If we are in the right
Or, arr[mid] is a common point*/
else high = mid - 1;
}
/* Return -1 if no peak element
found (dummy return) */
return -1;
}
public static void main(String[] args) {
int[] arr = {1, 2, 3, 4, 5, 6, 7, 8, 5, 1};
// Create an instance of the Solution class
Solution sol = new Solution();
int ans = sol.findPeakElement(arr);
// Output the result
System.out.println("The peak is at index: " + ans);
}
}
class Solution:
# Function to find peak element in the array
def findPeakElement(self, arr):
# Size of array
n = len(arr)
# Edge cases:
if n == 1:
return 0
if arr[0] > arr[1]:
return 0
if arr[n - 1] > arr[n - 2]:
return n - 1
low = 1
high = n - 2
while low <= high:
mid = (low + high) // 2
# If arr[mid] is the peak
if arr[mid - 1] < arr[mid] and arr[mid] > arr[mid + 1]:
return mid
# If we are in the left part of array
if arr[mid] < arr[mid - 1]:
high = mid - 1
else:
low = mid + 1
# Return -1 if no peak element found
return -1
def main():
arr = [1, 2, 3, 4, 5, 6, 7, 8, 5, 1]
# Create an instance of the Solution class
sol = Solution()
ans = sol.findPeakElement(arr)
# Output the result
print("The peak is at index:", ans)
# Call the main function
if __name__ == "__main__":
main()
class Solution {
// Function to find peak element in the array
findPeakElement(arr) {
// Size of array
let n = arr.length;
// Edge cases:
if (n == 1) return 0;
if (arr[0] > arr[1]) return 0;
if (arr[n - 1] > arr[n - 2]) return n - 1;
let low = 1, high = n - 2;
while (low <= high) {
let mid = Math.floor((low + high) / 2);
// If arr[mid] is the peak
if (arr[mid - 1] < arr[mid] && arr[mid] > arr[mid + 1])
return mid;
// If we are in the left part of the array
if (arr[mid] < arr[mid - 1])
high = mid - 1;
// If we are in the right part of the array
else
low = mid + 1;
}
// Return -1 if no peak element found
return -1;
}
}
function main() {
let arr = [1, 2, 3, 4, 5, 6, 7, 8, 5, 1];
// Create an instance of the Solution class
let sol = new Solution();
let ans = sol.findPeakElement(arr);
// Output the result
console.log("The peak is at index:", ans);
}
// Call the main function
main();
Q: How does the algorithm handle edge indices?
A: If the middle element is at the start (arr[0]) or end (arr[n−1]) of the array, compare it with its only neighbor. Binary search adapts to these cases seamlessly.
Q: What happens if the array has duplicates?
A: Peaks are defined based on strict inequality, so duplicates may break the guarantee of finding a peak at some points. However, the algorithm will still find a valid peak if one exists.
Q: How would you modify the algorithm to find all peaks?
A: Use a linear scan to check each element and its neighbors. Record all indices where arr[i−1]
Q: What if the peaks need to be ranked by their values?
A: Find all peaks and sort them by their values. This is useful in applications like optimization or ranking tasks where the relative height of peaks matters.