You are given an integer n. You need to find out the number of prime numbers in the range [1, n] (inclusive). Return the number of prime numbers in the range.
A prime number is a number which has no divisors except, 1 and itself.
Input: n = 6
Output: 3
Explanation: Prime numbers in the range [1, 6] are 2, 3, 5.
Input: n = 10
Output: 4
Explanation: Prime numbers in the range [1, 10] are 2, 3, 5, 7.
Input: n = 20
A naive approach to count prime numbers till N, is to check every number starting from 1 till N for prime. Keep a counter to store the count. If the number is prime, increment the counter. Once all the numbers are checked, the counter stores the required count.
#include <bits/stdc++.h>
using namespace std;
class Solution {
private:
/* Function to find whether the
number is prime or not */
bool isPrime(int n) {
/* Variable to store the
count of divisors of n */
int count = 0;
// Loop from 1 to n
for (int i = 1; i <= n; ++i) {
// Check if i is a divisor
if (n % i == 0) {
// Increment count
count = count + 1;
}
}
// If count is 2, n is prime
if (count == 2) return true;
// Else not prime
return false;
}
public:
/* Function to find count
of primes till n */
int primeUptoN(int n) {
// Variable to store count
int count = 0;
// Iterate from 1 to n
for (int i = 2; i <= n; i++) {
// Check if i is prime
if (isPrime(i)) count++;
}
// Return the count
return count;
}
};
int main() {
int n = 6;
/* Creating an instance of
Solution class */
Solution sol;
/* Function call to get
count of all primes till n */
int ans = sol.primeUptoN(n);
cout << "The count of primes till " << n << " is: " << ans;
return 0;
}
class Solution {
/* Function to find whether the
number is prime or not */
private boolean isPrime(int n) {
/* Variable to store the
count of divisors of n */
int count = 0;
// Loop from 1 to n
for (int i = 1; i <= n; ++i) {
// Check if i is a divisor
if (n % i == 0) {
// Increment count
count = count + 1;
}
}
// If count is 2, n is prime
if (count == 2) return true;
// Else not prime
return false;
}
/* Function to find count
of primes till n */
public int primeUptoN(int n) {
// Variable to store count
int count = 0;
// Iterate from 1 to n
for (int i = 2; i <= n; i++) {
// Check if i is prime
if (isPrime(i)) count++;
}
// Return the count
return count;
}
public static void main(String[] args) {
int n = 6;
/* Creating an instance of
Solution class */
Solution sol = new Solution();
/* Function call to get
count of all primes till n */
int ans = sol.primeUptoN(n);
System.out.println("The count of primes till " + n + " is: " + ans);
}
}
class Solution:
# Function to find whether the
# number is prime or not
def isPrime(self, n):
# Variable to store the
# count of divisors of n
count = 0
# Loop from 1 to n
for i in range(1, n + 1):
# Check if i is a divisor
if n % i == 0:
# Increment count
count = count + 1
# If count is 2, n is prime
if count == 2:
return True
# Else not prime
return False
# Function to find count
# of primes till n
def primeUptoN(self, n):
# Variable to store count
count = 0
# Iterate from 1 to n
for i in range(2, n + 1):
# Check if i is prime
if self.isPrime(i):
count += 1
# Return the count
return count
# Input number
n = 6
# Creating an instance of Solution class
sol = Solution()
# Function call to get count of all primes till n
ans = sol.primeUptoN(n)
print("The count of primes till", n, "is:", ans)
class Solution {
// Function to find whether the
// number is prime or not
isPrime(n) {
// Variable to store the
// count of divisors of n
let count = 0;
// Loop from 1 to n
for (let i = 1; i <= n; ++i) {
// Check if i is a divisor
if (n % i === 0) {
// Increment count
count = count + 1;
}
}
// If count is 2, n is prime
if (count === 2) return true;
// Else not prime
return false;
}
// Function to find count
// of primes till n
primeUptoN(n) {
// Variable to store count
let count = 0;
// Iterate from 1 to n
for (let i = 2; i <= n; i++) {
// Check if i is prime
if (this.isPrime(i)) count++;
}
// Return the count
return count;
}
}
// Input number
let n = 6;
// Creating an instance of Solution class
let sol = new Solution();
// Function call to get count of all primes till n
let ans = sol.primeUptoN(n);
console.log("The count of primes till " + n + " is: " + ans);
Time Complexity: O(N2) – Checking all numbers from 1 to n for prime and checking if a number is prime or not will take O(n) TC.
Space Complexity: O(1) – Using a couple of variables i.e., constant space.
The previous approach can be optimized by improving the complexity of the function to find whether a number is prime or not.
#include <bits/stdc++.h>
using namespace std;
class Solution {
private:
/* Function to find whether the
number is prime or not */
bool isPrime(int n) {
/* Variable to store the
count of divisors of n */
int count = 0;
// Loop from 1 to square root of n
for(int i = 1; i <= sqrt(n); ++i) {
// Check if i is a divisor
if(n % i == 0) {
// Increment count
count = count + 1;
/* Check if counterpart divisor
is different from original divisor */
if(n % i != i) {
// Increment count
count = count + 1;
}
}
}
// If count is 2, n is prime
if(count == 2) return true;
// Else not prime
return false;
}
public:
/* Function to find count
of primes till n */
int primeUptoN(int n) {
// Variable to store count
int count = 0;
// Iterate from 1 to n
for (int i = 2; i <= n; i++) {
// Check if i is prime
if (isPrime(i)) count++;
}
// Return the count
return count;
}
};
int main() {
int n = 6;
/* Creating an instance of
Solution class */
Solution sol;
/* Function call to get
count of all primes till n */
int ans = sol.primeUptoN(n);
cout << "The count of primes till " << n << " is: " << ans;
return 0;
}
class Solution {
// Function to find whether the number is prime or not
private boolean isPrime(int n) {
// Variable to store the count of divisors of n
int count = 0;
// Loop from 1 to square root of n
for (int i = 1; i <= Math.sqrt(n); ++i) {
// Check if i is a divisor
if (n % i == 0) {
// Increment count
count = count + 1;
/* Check if counterpart divisor is
different from original divisor */
if (n / i != i) {
// Increment count
count = count + 1;
}
}
}
// If count is 2, n is prime
return count == 2;
}
// Function to find count of primes till n
public int primeUptoN(int n) {
// Variable to store count
int count = 0;
// Iterate from 1 to n
for (int i = 2; i <= n; i++) {
// Check if i is prime
if (isPrime(i)) count++;
}
// Return the count
return count;
}
public static void main(String[] args) {
int n = 6;
// Creating an instance of Solution class
Solution sol = new Solution();
/* Function call to get count
of all primes till n */
int ans = sol.primeUptoN(n);
System.out.println("The count of primes till " + n + " is: " + ans);
}
}
import math
class Solution:
# Function to find whether
# the number is prime or not
def isPrime(self, n):
# Variable to store the count
# of divisors of n
count = 0
# Loop from 1 to square root of n
for i in range(1, int(math.sqrt(n)) + 1):
# Check if i is a divisor
if n % i == 0:
# Increment count
count += 1
# Check if counterpart divisor is
# different from original divisor
if n // i != i:
# Increment count
count += 1
# If count is 2, n is prime
return count == 2
# Function to find count of primes till n
def primeUptoN(self, n):
# Variable to store count
count = 0
# Iterate from 1 to n
for i in range(2, n + 1):
# Check if i is prime
if self.isPrime(i):
count += 1
# Return the count
return count
if __name__ == "__main__":
n = 6
# Creating an instance of Solution class
sol = Solution()
# Function call to get count of all primes till n
ans = sol.primeUptoN(n)
print(f"The count of primes till {n} is: {ans}")
class Solution {
/* Function to find whether the
number is prime or not */
isPrime(n) {
/* Variable to store the
count of divisors of n */
let count = 0;
// Loop from 1 to square root of n
for (let i = 1; i <= Math.sqrt(n); ++i) {
// Check if i is a divisor
if (n % i === 0) {
// Increment count
count = count + 1;
/* Check if counterpart divisor is
different from original divisor */
if (n / i !== i) {
// Increment count
count = count + 1;
}
}
}
// If count is 2, n is prime
return count === 2;
}
// Function to find count of primes till n
primeUptoN(n) {
// Variable to store count
let count = 0;
// Iterate from 1 to n
for (let i = 2; i <= n; i++) {
// Check if i is prime
if (this.isPrime(i)) count++;
}
// Return the count
return count;
}
}
// Input number
let n = 6;
// Creating an instance of Solution class
let sol = new Solution();
// Function call to get count of all primes till n
let ans = sol.primeUptoN(n);
console.log("The count of primes till " + n + " is: " + ans);
Time Complexity: O(N3/2) – Checking all numbers from 1 to N for prime and checking if a number is prime or not will take O(N1/2) TC.
Space Complexity: O(1) – Using a couple of variables i.e., constant space.