You are given an integer n. You need to check if the number is prime or not. Return true if it is a prime number, otherwise return false.
A prime number is a number which has no divisors except 1 and itself.
Input: n = 5
Output: true
Explanation: The only divisors of 5 are 1 and 5 , So the number 5 is prime.
Input: n = 8
Output: false
Explanation: The divisors of 8 are 1, 2, 4, 8, thus it is not a prime number.
Input: n = 9
Given a number, all its divisors can be counted. Since a prime number has only two divisors, which are 1 and the number itself, the count of divisors for a prime number will always be 2. If the given number has two divisors, then it is prime, else it is not.
The prime numbers start from 2. Thus, if a number is less than 2, it can be directly said as non-prime.
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
/* Function to find whether the
number is prime or not */
bool isPrime(int n) {
// Edge case
if(n < 2) return false;
/* Variable to store the
count of divisors of n */
int count = 0;
// Loop from 1 to n
for (int i = 1; i <= n; ++i) {
// Check if i is a divisor
if (n % i == 0) {
// Increment Count
count = count + 1;
}
}
// If count is 2, n is prime
if (count == 2) return true;
// Else not prime
return false;
}
};
int main() {
int n = 5;
/* Creating an instance of
Solution class */
Solution sol;
/* Function call to find whether the
given number is prime or not */
bool ans = sol.isPrime(n);
if (ans) {
cout << n << " is a prime number." << endl;
} else {
cout << n << " is not a prime number." << endl;
}
return 0;
}
class Solution {
/* Function to find whether the
number is prime or not */
public boolean isPrime(int n) {
// Edge case
if(n < 2) return false;
/* Variable to store the
count of divisors of n */
int count = 0;
// Loop from 1 to n
for (int i = 1; i <= n; ++i) {
// Check if i is a divisor
if (n % i == 0) {
// Increment Count
count = count + 1;
}
}
// If count is 2, n is prime
if (count == 2) return true;
// Else not prime
return false;
}
public static void main(String[] args) {
int n = 5;
/* Creating an instance of
Solution class */
Solution sol = new Solution();
/* Function call to find whether the
given number is prime or not */
boolean ans = sol.isPrime(n);
if (ans) {
System.out.println(n + " is a prime number.");
} else {
System.out.println(n + " is not a prime number.");
}
}
}
class Solution:
# Function to find whether the
# number is prime or not
def isPrime(self, n):
# Edge Case
if n < 2:
return False
# Variable to store the
# count of divisors of n
count = 0
# Loop from 1 to n
for i in range(1, n + 1):
# Check if i is a divisor
if n % i == 0:
# Increment Count
count += 1
# If count is 2, n is prime
if count == 2:
return True
# Else not prime
return False
# Main function
if __name__ == "__main__":
n = 5
# Creating an instance of
# Solution class
sol = Solution()
# Function call to find whether the
# given number is prime or not
ans = sol.isPrime(n)
if ans:
print(f"{n} is a prime number.")
else:
print(f"{n} is not a prime number.")
class Solution {
/* Function to find whether the
number is prime or not */
isPrime(n) {
// Edge Case
if(n < 2) return false;
/* Variable to store the
count of divisors of n */
let count = 0;
// Loop from 1 to n
for (let i = 1; i <= n; ++i) {
// Check if i is a divisor
if (n % i === 0) {
// Increment Count
count = count + 1;
}
}
// If count is 2, n is prime
if (count === 2) return true;
// Else not prime
return false;
}
}
// Main function
const main = () => {
let n = 5;
/* Creating an instance of
Solution class */
let sol = new Solution();
/* Function call to find whether the
given number is prime or not */
let ans = sol.isPrime(n);
if (ans) {
console.log(n + " is a prime number.");
} else {
console.log(n + " is not a prime number.");
}
}
main();
Time Complexity: O(N) – Looping N times to find the count of all divisors of N.
Space Complexity: O(1) – Using a couple of variables i.e., constant space.
The algorithm can be optimized by only iterating up to the square root of n when checking for divisors. This is because if n has a divisor i, then another divisor (counterpart divisor) for n is (n/i).
The prime numbers start from 2. Thus, if a number is less than 2, it can be directly said as non-prime.
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
/* Function to find whether the
number is prime or not */
bool isPrime(int n) {
// Edge case
if(n < 2) return false;
/* Variable to store the
count of divisors of n */
int count = 0;
// Loop from 1 to square root of n
for(int i = 1; i <= sqrt(n); ++i) {
// Check if i is a divisor
if(n % i == 0) {
// Increment Count
count = count + 1;
/* Check if counterpart divisor
is different from original divisor */
if(n / i != i) {
// Increment count
count = count + 1;
}
}
}
// If count is 2, n is prime
if(count == 2) return true;
// Else not prime
return false;
}
};
int main() {
int n = 5;
/* Creating an instance of
Solution class */
Solution sol;
/* Function call to find whether the
given number is prime or not */
bool ans = sol.isPrime(n);
if (ans) {
cout << n << " is a prime number." << endl;
} else {
cout << n << " is not a prime number." << endl;
}
return 0;
}
class Solution {
/* Function to find whether the
number is prime or not */
public boolean isPrime(int n) {
// Edge case
if(n < 2) return false;
/* Variable to store the
count of divisors of n */
int count = 0;
// Loop from 1 to square root of n
for(int i = 1; i <= Math.sqrt(n); ++i) {
// Check if i is a divisor
if(n % i == 0) {
// Increment Count
count = count + 1;
/* Check if counterpart divisor
is different from original divisor */
if(n / i != i) {
// Increment count
count = count + 1;
}
}
}
// If count is 2, n is prime
if(count == 2) return true;
// Else not prime
return false;
}
public static void main(String[] args) {
int n = 5;
/* Creating an instance of
Solution class */
Solution sol = new Solution();
/* Function call to find whether the
given number is prime or not */
boolean ans = sol.isPrime(n);
if (ans) {
System.out.println(n + " is a prime number.");
} else {
System.out.println(n + " is not a prime number.");
}
}
}
import math
class Solution:
# Function to find whether the
# number is prime or not
def isPrime(self, n):
# Edge Case
if n < 2:
return False
# Variable to store the
# count of divisors of n
count = 0
# Loop from 1 to square root of n
for i in range(1, int(math.sqrt(n)) + 1):
# Check if i is a divisor
if n % i == 0:
# Increment Count
count += 1
# Check if counterpart divisor
# is different from original divisor
if n // i != i:
# Increment count
count += 1
# If count is 2, n is prime
return count == 2
# Main function
if __name__ == "__main__":
n = 5
# Creating an instance of
# Solution class
sol = Solution()
# Function call to find whether the
# given number is prime or not
ans = sol.isPrime(n)
if ans:
print(f"{n} is a prime number.")
else:
print(f"{n} is not a prime number.")
class Solution {
/* Function to find whether the
number is prime or not */
isPrime(n) {
// Edge Case
if(n < 2) return false;
/* Variable to store the
count of divisors of n */
let count = 0;
// Loop from 1 to square root of n
for (let i = 1; i <= Math.sqrt(n); ++i) {
// Check if i is a divisor
if (n % i === 0) {
// Increment Count
count = count + 1;
/* Check if counterpart divisor
is different from original divisor */
if (n / i !== i) {
// Increment count
count = count + 1;
}
}
}
// If count is 2, n is prime
return count === 2;
}
}
// Main function
const main = () => {
let n = 5;
/* Creating an instance of
Solution class */
let sol = new Solution();
/* Function call to find whether the
given number is prime or not */
let ans = sol.isPrime(n);
if (ans) {
console.log(n + " is a prime number.");
} else {
console.log(n + " is not a prime number.");
}
}
main();
Time Complexity: O(sqrt(N)) – Looping sqrt(N) times to find the count of all divisors of N.
Space Complexity: O(1) – Using a couple of variables i.e., constant space.