Given root of binary tree, return the bottom view of the binary tree.
The bottom view of a binary tree is the set of nodes visible when the tree is viewed from the bottom. Return nodes from the leftmost node to the rightmost node. Also if 2 nodes are outside the shadow of the tree and are at the same position then consider the node that appears later in level traversal.
Input : root = [20, 8, 22, 5, 3, null, 25, null, null, 10 ,14]
Output : [5, 10, 3, 14, 25]
Explanation : From left to right the path is as follows :
First we encounter node with value 5.
Then we have nodes 8 , 10 but from bottom only 10 will be visible.
Next we have 20 , 3 but from bottom only 3 will be visible.
Next we have 14 , 22 but from bottom only 14 will be visible.
Then we encounter node with value 25.
Input : root = [20, 8, 22, 5, 3, 4, 25, null, null, 10 ,14]
Output : [5, 10, 4, 14, 25]
Explanation : From left to right the path is as follows :
First we encounter node with value 5.
Then we have nodes 8 , 10 but from bottom only 10 will be visible.
Next we have 20 , 3 and 4. The 3 and 4 will be nodes visible from bottom but as the node 4 appears later from left to right , so only node 4 will be considered visible.
Next we have 14 , 22 but from bottom only 14 will be visible.
Then we encounter node with value 25.
Input: root = [10, 20, 30, 40, 60]
To determine the bottom view of a binary tree, we need to capture the nodes that are visible when observing the tree from below. This involves identifying nodes that appear at the lowest vertical level for each horizontal distance from the root. A Breadth-First Search (BFS) traversal is well-suited for this task, as it processes nodes level by level. By tracking the horizontal distance of each node from the root and storing the most recent node encountered at each distance in a map, we can accurately capture the bottom view. The horizontal distance helps in maintaining the vertical alignment of nodes, ensuring that we only keep the nodes that are visible from the bottom.
#include <bits/stdc++.h>
using namespace std;
// Definition for a binary tree node.
struct TreeNode {
int data;
TreeNode *left;
TreeNode *right;
TreeNode(int val) : data(val), left(nullptr), right(nullptr) {}
};
class Solution {
public:
vector<int> bottomView(TreeNode *root) {
// Vector to store the result
vector<int> ans;
// Check if the tree is empty
if (root == nullptr) {
return ans;
}
// Map to store the bottom view nodes
// based on their vertical positions
map<int, int> mpp;
// Queue for BFS traversal, each
// element is a pair containing node
// and its vertical position
queue<pair<TreeNode*, int>> q;
// Push the root node with its vertical
// position (0) into the queue
q.push({root, 0});
// BFS traversal
while (!q.empty()) {
// Retrieve the node and its vertical
// position from the front of the queue
auto it = q.front();
q.pop();
TreeNode* node = it.first;
int line = it.second;
// Update the map with the node's data
// for the current vertical position
mpp[line] = node->data;
// Process left child
if (node->left != nullptr) {
// Push the left child with a decreased
// vertical position into the queue
q.push({node->left, line - 1});
}
// Process right child
if (node->right != nullptr) {
// Push the right child with an increased
// vertical position into the queue
q.push({node->right, line + 1});
}
}
// Transfer values from the
// map to the result vector
for (auto it : mpp) {
ans.push_back(it.second);
}
return ans;
}
};
int main() {
// Creating a sample binary tree
TreeNode* root = new TreeNode(1);
root->left = new TreeNode(2);
root->left->left = new TreeNode(4);
root->left->right = new TreeNode(10);
root->left->left->right = new TreeNode(5);
root->left->left->right->right = new TreeNode(6);
root->right = new TreeNode(3);
root->right->right = new TreeNode(10);
root->right->left = new TreeNode(9);
Solution solution;
// Get the Bottom View traversal
vector<int> bottomView = solution.bottomView(root);
// Print the result
cout << "Bottom View Traversal: " << endl;
for (auto node : bottomView) {
cout << node << " ";
}
return 0;
}
import java.util.*;
class TreeNode {
int data;
TreeNode left;
TreeNode right;
TreeNode(int val) {
data = val;
left = null;
right = null;
}
}
class Solution {
public List<Integer> bottomView(TreeNode root) {
// List to store the result
List<Integer> ans = new ArrayList<>();
// Check if the tree is empty
if (root == null) {
return ans;
}
// Map to store the bottom view nodes
// based on their vertical positions
Map<Integer, Integer> mpp = new TreeMap<>();
// Queue for BFS traversal, each
// element is a pair containing node
// and its vertical position
Queue<Map.Entry<TreeNode, Integer>> q = new LinkedList<>();
// Push the root node with its vertical
// position (0) into the queue
q.add(new AbstractMap.SimpleEntry<>(root, 0));
// BFS traversal
while (!q.isEmpty()) {
// Retrieve the node and its vertical
// position from the front of the queue
Map.Entry<TreeNode, Integer> it = q.poll();
TreeNode node = it.getKey();
int line = it.getValue();
// Update the map with the node's data
// for the current vertical position
mpp.put(line, node.data);
// Process left child
if (node.left != null) {
// Push the left child with a decreased
// vertical position into the queue
q.add(new AbstractMap.SimpleEntry<>(node.left, line - 1));
}
// Process right child
if (node.right != null) {
// Push the right child with an increased
// vertical position into the queue
q.add(new AbstractMap.SimpleEntry<>(node.right, line + 1));
}
}
// Transfer values from the
// map to the result list
for (Map.Entry<Integer, Integer> it : mpp.entrySet()) {
ans.add(it.getValue());
}
return ans;
}
public static void main(String[] args) {
// Creating a sample binary tree
TreeNode root = new TreeNode(1);
root.left = new TreeNode(2);
root.left.left = new TreeNode(4);
root.left.right = new TreeNode(10);
root.left.left.right = new TreeNode(5);
root.left.left.right.right = new TreeNode(6);
root.right = new TreeNode(3);
root.right.right = new TreeNode(10);
root.right.left = new TreeNode(9);
Solution solution = new Solution();
// Get the Bottom View traversal
List<Integer> bottomView = solution.bottomView(root);
// Print the result
System.out.println("Bottom View Traversal: ");
for (int node : bottomView) {
System.out.print(node + " ");
}
}
}
from collections import deque
# Definition for a binary tree node.
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.data = val
self.left = left
self.right = right
class Solution:
def bottomView(self, root):
# List to store the result
ans = []
# Check if the tree is empty
if not root:
return ans
# Dictionary to store the bottom view nodes
# based on their vertical positions
mpp = {}
# Queue for BFS traversal, each
# element is a pair containing node
# and its vertical position
q = deque([(root, 0)])
# BFS traversal
while q:
# Retrieve the node and its vertical
# position from the front of the queue
node, line = q.popleft()
# Update the dictionary with the node's data
# for the current vertical position
mpp[line] = node.data
# Process left child
if node.left:
# Push the left child with a decreased
# vertical position into the queue
q.append((node.left, line - 1))
# Process right child
if node.right:
# Push the right child with an increased
# vertical position into the queue
q.append((node.right, line + 1))
# Transfer values from the
# dictionary to the result list
for key in sorted(mpp.keys()):
ans.append(mpp[key])
return ans
if __name__ == "__main__":
# Creating a sample binary tree
root = TreeNode(1)
root.left = TreeNode(2)
root.left.left = TreeNode(4)
root.left.right = TreeNode(10)
root.left.left.right = TreeNode(5)
root.left.left.right.right = TreeNode(6)
root.right = TreeNode(3)
root.right.right = TreeNode(10)
root.right.left = TreeNode(9)
solution = Solution()
# Get the Bottom View traversal
bottom_view = solution.bottomView(root)
# Print the result
print("Bottom View Traversal: ")
for node in bottom_view:
print(node, end=" ")
// Definition for a binary tree node.
class TreeNode {
constructor(val = 0, left = null, right = null){
this.data = val;
this.left = left;
this.right = right;
}
}
class Solution {
bottomView(root) {
// Array to store the result
let ans = [];
// Check if the tree is empty
if (root === null) {
return ans;
}
// Map to store the bottom view nodes
// based on their vertical positions
let mpp = new Map();
// Queue for BFS traversal, each
// element is a pair containing node
// and its vertical position
let q = [];
q.push([root, 0]);
// BFS traversal
while (q.length > 0) {
// Retrieve the node and its vertical
// position from the front of the queue
let [node, line] = q.shift();
// Update the map with the node's data
// for the current vertical position
mpp.set(line, node.data);
// Process left child
if (node.left !== null) {
// Push the left child with a decreased
// vertical position into the queue
q.push([node.left, line - 1]);
}
// Process right child
if (node.right !== null) {
// Push the right child with an increased
// vertical position into the queue
q.push([node.right, line + 1]);
}
}
// Transfer values from the
// map to the result array
let keys = Array.from(mpp.keys()).sort((a, b) => a - b);
for (let key of keys) {
ans.push(mpp.get(key));
}
return ans;
}
}
// Helper function to create a new TreeNode
function createTreeNode(val) {
return new TreeNode(val);
}
// Main function to test the solution
function main() {
// Creating a sample binary tree
let root = createTreeNode(1);
root.left = createTreeNode(2);
root.left.left = createTreeNode(4);
root.left.right = createTreeNode(10);
root.left.left.right = createTreeNode(5);
root.left.left.right.right = createTreeNode(6);
root.right = createTreeNode(3);
root.right.right = createTreeNode(10);
root.right.left = createTreeNode(9);
let solution = new Solution();
// Get the Bottom View traversal
let bottomView = solution.bottomView(root);
// Print the result
console.log("Bottom View Traversal: ");
for (let node of bottomView) {
console.log(node + " ");
}
}
main();
Time Complexity O(N), where N is the number of nodes in the binary tree. This arises from visiting each node exactly once during the BFS traversal.
Space Complexity O(N/2 + N/2), where N represents the number of nodes in the binary tree. The main space-consuming data structure is the queue used for BFS traversal. In the worst case of a balanced binary tree, the queue will have at most N/2 nodes, representing the maximum width of the tree.
Q: How does the horizontal distance (HD) help in identifying the bottom view?
A: Each node's HD is unique for its vertical column. Since BFS processes nodes level by level, the last node encountered at each HD is stored as the bottom view.
Q: Can this be done using a recursive approach?
A: Yes, but BFS is more intuitive since it guarantees level-by-level processing without needing explicit depth tracking.
Q: How does this problem compare to the vertical order traversal of a tree?
A: Vertical order traversal groups all nodes column-wise. Bottom view only considers the last encountered node for each column.
Q: Can this approach be optimized further?
A: The approach already runs in O(N log N) due to sorting by HD. Using an ordered map (TreeMap in Java or sortedcontainers in Python) avoids explicit sorting, making it O(N log N) but slightly faster.