Given an array nums of n integers, where nums[i] represents the number of pages in the i-th book, and an integer m representing the number of students, allocate all the books to the students so that each student gets at least one book, each book is allocated to only one student, and the allocation is contiguous.
Allocate the books to m students in such a way that the maximum number of pages assigned to a student is minimized. If the allocation of books is not possible, return -1.
Input: nums = [12, 34, 67, 90], m=2
Output: 113
Explanation: The allocation of books will be 12, 34, 67 | 90. One student will get the first 3 books and the other will get the last one.
Input: nums = [25, 46, 28, 49, 24], m=4
Output: 71
Explanation: The allocation of books will be 25, 46 | 28 | 49 | 24.
Input: nums = [15, 17, 20], m=2
The extremely naive approach is to check all possible pages from max element of the array to sum of all the elements of the array. The minimum pages for which all the books can be allocated to M students will be our answer.
#include <bits/stdc++.h>
using namespace std;
class Solution {
private:
/* Function to count the number of
students required given the maximum
pages each student can read */
int countStudents(vector<int>& nums, int pages) {
// Size of array
int n = nums.size();
int students = 1;
int pagesStudent = 0;
for (int i = 0; i < n; i++) {
if (pagesStudent + nums[i] <= pages) {
// Add pages to current student
pagesStudent += nums[i];
} else {
// Add pages to next student
students++;
pagesStudent = nums[i];
}
}
return students;
}
public:
/*Function to allocate the book to ‘m’
students such that the maximum number
of pages assigned to a student is minimum */
int findPages(vector<int>& nums, int m) {
int n = nums.size();
// Book allocation impossible
if (m > n) return -1;
// Calculate the range for binary search
int low = *max_element(nums.begin(), nums.end());
int high = accumulate(nums.begin(), nums.end(), 0);
// Linear search for minimum maximum pages
for (int pages = low; pages <= high; pages++) {
if (countStudents(nums, pages) == m) {
return pages;
}
}
return low;
}
};
int main() {
vector<int> arr = {25, 46, 28, 49, 24};
int n = 5;
int m = 4;
// Create an instance of the Solution class
Solution sol;
int ans = sol.findPages(arr, m);
// Output the result
cout << "The answer is: " << ans << "\n";
return 0;
}
import java.util.*;
class Solution {
/*Function to count the number of
students required given the maximum
pages each student can read*/
private int countStudents(int[] nums, int pages) {
// Size of array
int n = nums.length;
int students = 1;
int pagesStudent = 0;
for (int i = 0; i < n; i++) {
if (pagesStudent + nums[i] <= pages) {
// Add pages to current student
pagesStudent += nums[i];
} else {
// Add pages to next student
students++;
pagesStudent = nums[i];
}
}
return students;
}
/* Function to allocate the book to ‘m’
students such that the maximum number
of pages assigned to a student is minimum*/
public int findPages(int[] nums, int m) {
int n = nums.length;
// Book allocation impossible
if (m > n) return -1;
// Calculate the range for search
int low = Integer.MIN_VALUE;
int high = 0;
for(int i = 0; i < n; i++){
low = Math.max(low, nums[i]);
high = high + nums[i];
}
// Linear search for minimum maximum pages
for (int pages = low; pages <= high; pages++) {
if (countStudents(nums, pages) == m) {
return pages;
}
}
return low;
}
public static void main(String[] args) {
int[] arr = {25, 46, 28, 49, 24};
int m = 4;
// Create an instance of the Solution class
Solution sol = new Solution();
int ans = sol.findPages(arr, m);
// Output the result
System.out.println("The answer is: " + ans);
}
}
class Solution:
"""Function to count the number of
students required given the maximum
pages each student can read"""
def countStudents(self, nums, pages):
# Size of array
n = len(nums)
students = 1
pagesStudent = 0
for i in range(n):
if pagesStudent + nums[i] <= pages:
# Add pages to current student
pagesStudent += nums[i]
else:
# Add pages to next student
students += 1
pagesStudent = nums[i]
return students
"""Function to allocate the book to ‘m’
students such that the maximum number
of pages assigned to a student is minimum"""
def findPages(self, nums, m):
n = len(nums)
# Book allocation impossible
if m > n:
return -1
# Calculate the range for binary search
low = max(nums)
high = sum(nums)
# Linear search for minimum maximum pages
for pages in range(low, high + 1):
if self.countStudents(nums, pages) == m:
return pages
return low
if __name__ == "__main__":
arr = [25, 46, 28, 49, 24]
m = 4
# Create an instance of the Solution class
sol = Solution()
ans = sol.findPages(arr, m)
# Output the result
print("The answer is:", ans)
class Solution {
/* Function to count the number of
students required given the maximum
pages each student can read */
countStudents(nums, pages) {
// Size of array
let n = nums.length;
let students = 1;
let pagesStudent = 0;
for (let i = 0; i < n; i++) {
if (pagesStudent + nums[i] <= pages) {
// Add pages to current student
pagesStudent += nums[i];
} else {
// Add pages to next student
students++;
pagesStudent = nums[i];
}
}
return students;
}
/* Function to allocate the book to ‘m’
students such that the maximum number
of pages assigned to a student is minimum */
findPages(nums, m) {
// Size of array
let n = nums.length;
// Book allocation impossible
if (m > n) return -1;
let low = Math.max(...nums);
let high = nums.reduce((a, b) => a + b, 0);
// Linear search for minimum maximum pages
for (let pages = low; pages <= high; pages++) {
if (this.countStudents(nums, pages) === m) {
return pages;
}
}
return low;
}
}
function main() {
let nums = [25, 46, 28, 49, 24];
let m = 4;
// Create an instance of the Solution class
let sol = new Solution();
let ans = sol.findPages(nums, m);
// Output the result
console.log("The answer is:", ans);
}
// Call the main function
main();
Here, the idea is to use binary search algorithm to optimize the brute-force solution which was using linear search algorithm. The answer space, represented as [max element, sum of all elements], is actually sorted so, binary search algorithm can be applied here. Based on certain conditions, the search space can be divided into halves in each iteration thus enhancing the overall time complexity.
#include <bits/stdc++.h>
using namespace std;
class Solution {
private:
/* Function to count the number of
students required given the maximum
pages each student can read */
int countStudents(vector<int>& nums, int pages) {
// Size of array
int n = nums.size();
int students = 1;
int pagesStudent = 0;
for (int i = 0; i < n; i++) {
if (pagesStudent + nums[i] <= pages) {
// Add pages to current student
pagesStudent += nums[i];
} else {
// Add pages to next student
students++;
pagesStudent = nums[i];
}
}
return students;
}
public:
/*Function to allocate the book to ‘m’
students such that the maximum number
of pages assigned to a student is minimum */
int findPages(vector<int>& nums, int m) {
int n = nums.size();
// Book allocation impossible
if (m > n) return -1;
// Calculate the range for binary search
int low = *max_element(nums.begin(), nums.end());
int high = accumulate(nums.begin(), nums.end(), 0);
// Binary search for minimum maximum pages
while (low <= high) {
int mid = (low + high) / 2;
int students = countStudents(nums, mid);
if (students > m) {
low = mid + 1;
}
else {
high = mid - 1;
}
}
return low;
}
};
int main() {
vector<int> arr = {25, 46, 28, 49, 24};
int n = 5;
int m = 4;
// Create an instance of the Solution class
Solution sol;
int ans = sol.findPages(arr, m);
// Output the result
cout << "The answer is: " << ans << "\n";
return 0;
}
import java.util.*;
class Solution {
/*Function to count the number of
students required given the maximum
pages each student can read*/
private int countStudents(int[] nums, int pages) {
// Size of array
int n = nums.length;
int students = 1;
int pagesStudent = 0;
for (int i = 0; i < n; i++) {
if (pagesStudent + nums[i] <= pages) {
// Add pages to current student
pagesStudent += nums[i];
} else {
// Add pages to next student
students++;
pagesStudent = nums[i];
}
}
return students;
}
/* Function to allocate the book to ‘m’
students such that the maximum number
of pages assigned to a student is minimum*/
public int findPages(int[] nums, int m) {
int n = nums.length;
// Book allocation impossible
if (m > n) return -1;
// Calculate the range for search
int low = Integer.MIN_VALUE;
int high = 0;
for(int i = 0; i < n; i++){
low = Math.max(low, nums[i]);
high = high + nums[i];
}
// Binary search for minimum maximum pages
while (low <= high) {
int mid = (low + high) / 2;
int students = countStudents(nums, mid);
if (students > m) {
low = mid + 1;
}
else {
high = mid - 1;
}
}
return low;
}
public static void main(String[] args) {
int[] arr = {25, 46, 28, 49, 24};
int m = 4;
// Create an instance of the Solution class
Solution sol = new Solution();
int ans = sol.findPages(arr, m);
// Output the result
System.out.println("The answer is: " + ans);
}
}
class Solution:
"""Function to count the number of
students required given the maximum
pages each student can read"""
def countStudents(self, nums, pages):
# Size of array
n = len(nums)
students = 1
pagesStudent = 0
for i in range(n):
if pagesStudent + nums[i] <= pages:
# Add pages to current student
pagesStudent += nums[i]
else:
# Add pages to next student
students += 1
pagesStudent = nums[i]
return students
"""Function to allocate the book to ‘m’
students such that the maximum number
of pages assigned to a student is minimum"""
def findPages(self, nums, m):
n = len(nums)
# Book allocation impossible
if m > n:
return -1
# Calculate the range for binary search
low = max(nums)
high = sum(nums)
# Binary search for minimum maximum pages
while low <= high:
mid = (low + high) // 2
students = self.countStudents(nums, mid)
if students > m:
low = mid + 1
else:
high = mid - 1
return low
if __name__ == "__main__":
arr = [25, 46, 28, 49, 24]
m = 4
# Create an instance of the Solution class
sol = Solution()
ans = sol.findPages(arr, m)
# Output the result
print("The answer is:", ans)
class Solution {
/* Function to count the number of
students required given the maximum
pages each student can read */
countStudents(nums, pages) {
// Size of array
let n = nums.length;
let students = 1;
let pagesStudent = 0;
for (let i = 0; i < n; i++) {
if (pagesStudent + nums[i] <= pages) {
// Add pages to current student
pagesStudent += nums[i];
} else {
// Add pages to next student
students++;
pagesStudent = nums[i];
}
}
return students;
}
/* Function to allocate the book to ‘m’
students such that the maximum number
of pages assigned to a student is minimum */
findPages(nums, m) {
// Size of array
let n = nums.length;
// Book allocation impossible
if (m > n) return -1;
let low = Math.max(...nums);
let high = nums.reduce((a, b) => a + b, 0);
// Binary search for minimum maximum pages
while (low <= high) {
var mid = Math.floor((low + high) / 2);
var students = this.countStudents(nums, mid);
if (students > m) {
low = mid + 1;
} else {
high = mid - 1;
}
}
return low;
}
}
function main() {
let nums = [25, 46, 28, 49, 24];
let m = 4;
// Create an instance of the Solution class
let sol = new Solution();
let ans = sol.findPages(nums, m);
// Output the result
console.log("The answer is:", ans);
}
// Call the main function
main();
Q: How is the feasibility function implemented?
A: Start with the first student and a running sum of pages. Add books until the sum exceeds mid, then allocate a new student. If the number of students exceeds m, return false. Otherwise, return true.
Q: What is the significance of max(nums) and sum(nums) as bounds?
A: The lower bound max(nums) ensures that no student is assigned less than the largest book. The upper bound sum(nums) represents the scenario where one student gets all the books.
Q: What if the students have varying reading capacities?
A: Incorporate the reading capacities into the feasibility function by limiting the maximum pages each student can handle. Adjust the binary search accordingly to account for these constraints.
Q: What if the number of books or students changes dynamically?
A: For dynamic updates, maintain a prefix sum array of book pages. Use this to quickly calculate the total pages in any contiguous subarray, speeding up feasibility checks.